
Automatic Hexahedral Sweep Mesh Generation of Open Volumes 

Nilanjan Mukherjee
*1

, Bhanu Peddi
2
, Jean Cabello

3
 & Michael Hancock

4
 

Meshing & Abstraction Group 

Digital Simulation Solutions 

Siemens PLM Software 

SIEMENS 
2000 Eastman Dr., Milford, Ohio 45150 USA 
1
{mukherjee.nilanjan@siemens.com} 

2
{bhanu.peddi@siemens.com} 

3
{jean.cabello@siemens.com}

4
{hancock.michael@siemens.com}  

 

* Author to whom all correspondence should be addressed 

 

 

Abstract:  Open volumes with partial surface geometry are often encountered in the 

industry while modifying or morphing legacy meshes or while creating meshes in struc-

tural recesses or void regions. The paper describes an algorithm for auto-generating hex-

ahedral meshes on these open volumes without the need for laborious CAD repairs. 

Based on the available input, the open volumes are first topologically categorized into 

five classes. From the free edges and vertices of the open volume, a new, temporary, 

mesher-native and lightweight void-topology is first created. The void-topological net-

work is supplemented by an underlying void-geometry which is also an abstract, light-

weight, mesher-native discrete dataset. With the help of these void vertices and edges the 

open or void-volume is topologically and geometrically sealed.  The source mesh is first 

morphed on the target if the latter is present. Transfinite meshing is done on the wall fac-

es. A 2½D sweep meshing approach is used to complete the hex mesh. Thus, during the 

mesh generation process, facetted geometry is automatically created that can be handed 

over to the CAD engine. 

 

 

Keywords:  open volume, hexahedral meshing, sweep, void topology, void geometry, 

transfinite. 

1 Introduction 

Multiple industrial finite element analysis models experience “Open Volumes”. Some 

of these could be voids or structural recesses that are packed with non-structural material. 

Typical examples include void spaces between the content and its container filled with 

bubble material in drop-box analyses; epoxy or resin filled zones around fibrous material 

in micromechanical analyses, explosive filled spaces between missile parts, bone marrow 

spaces in bone cavity or interstitial fluid zones in bioengineering analyses etc. Remeshing 

legacy meshes and constructing new geometry from or around it has been a commonly 

used FE modeling procedure since the late 1990s. Such remeshing can encounter void 

spaces between two solid or shell meshes with partial geometry resulting in open vol-

umes.  Some typical examples are displayed in Figure 1. Traditional approach for gener-

ating solid meshes in such void regions is to use CAD engines to create NURBS faces 
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and stitch them in to make a watertight CAD solid body. Needless to say it is an ineffi-

cient and costly solution.   

                   
a.                                                             b.                    c.  

 

Figure 1. Some typical “open volume”s exemplified by a) arteries (cross-section), 

b) a bone (for bone marrow analysis) and c) bubble packed space between container 

and content (for drop-box analysis) 

 

In this paper we attempt to solve the problem on the mesh generation side. The mesh-

ing engine developed at Siemens already creates an abstract lightweight representation of 

the input CAD or discrete geometry for the purpose of mesh generation. To this mesher-

native abstract geometry network, we add new topology and geometry entities called 

“void-topology” and “void-geometry” respectively. Source face vertices and edges are 

first paired with those of the target face via topological comparison. Next, a free-edge and 

free-vertex detection system is set up to generate void topological edges and faces called 

v-TopoEdge and v-TopoFace respectively. Each v-TopoEdge and v-TopoFace can have 

underlying v-GeomEdge and v-GeomFace respectively. The geometry creation methods 

are discussed in details. 

Once the void topology and void-geometry entities are added to the existing virtual ge-

ometry network, volume closure strategies can be used to seal the v-TopoFaces and make 

a watertight v-TopoVolume that can be hex-meshed. Depending on the available input 

data, the Open Volume is organized into 5 classes. Class specific closure strategies are 

used to create a watertight void-volume.  

A traditional 2½D sweep meshing approach is used to complete the hex mesh from 

quadrilateral meshes initially generated on the volume-skin. Thus, in the process of hexa-

hedral mesh generation for the open volume, we also create facetted geometry that can be 

handed over to the CAD engine to enable it to create a watertight CAD solid. 

 

 

1.1 Related Work 

 

There are many sweeping algorithms that can mesh various prismatic solids (2½D). The 

advances in these algorithms enabled the creation of hexahedral meshes with unique and 

distinct geometries that include non-planar, non-parallel and multiple source and target 

faces [1, 2].  Most of these algorithms use a 2-D structured or unstructured quadrilateral 

mesh as source mesh and then create a target mesh by mapping the source mesh [1,3]. 

Mapping is a popular tool for hex mesh generation, which is implemented to produce fi-

nal structured hexahedral mesh [4]. Constraints on these hexahedral meshes determine 

the quality and visual appearance of these meshes. Therefore, a criterion is defined to 



Automatic Hexahedral Sweep Mesh Generation of Open Volumes 

 

produce a hexahedral swept mesh for a given geometry [5]. No work in open literature 

that deals with hexahedral meshing on incomplete or open CAD volumes could be found.   

2. Open Volumes and their taxonomy 

 The “Open Volume” is defined by the complete absence of a CAD body and is 

made up of an incomplete set of connected faces. These faces could either be NURBS 

faces or tessellated or facetted faces, or abstract geometry (ABSCAD) faces that are a 

lighter weight, locally healed and sometimes globally modified version of CAD geome-

try, often generated on legacy fem data. Since the hex mesh to be generated will use a 

2½D sweep mesh generation algorithm, the user needs to specify a source face and a tar-

get face (if exists) and wall faces (if exist). According to the available data, the open vol-

umes first need to be classified as shown in Table I. This classification will enable us to 

identify closure strategies for each case that need to be developed within the mesher to 

produce a sweep-meshable v-Volume (i.e. void-Volume). 

 

Table I:  Taxonomy of Open Volumes 

 

PROBLEM 

CLASS 

 

Source 

Face 

Target 

Face 

Wall  

Faces 

Examples 

CLASS I 

 

(single/ 

multiple 

loop) 

 

 


None 

 
Figure 2. Class I problem 

 

CLASS II 




 (single/ 

multiple 

loop) 

 

Face must 

have wall- 

free vertex 





 

 

 

 

Face must 

have wall-

free vertex 





 (some) 

 

 

 
Figure 3. Class II problem 

showing wall-free vertices 



CLASS III 


 (single/ 

multiple 

loop) 



 



 (some) 

 

 

 
Figure 4. Class III problem 

CLASS IV 

(single/ 

multiple 

loop) 

--- 

 (all) 

 

 
Figure 5. Class IV problem 

(multiloop) depicting the 

missing target face 

CLASS V 

(single/multiple 

loop) 

--- --- 

 (all) 

single/ 

multiple 

loop 

 

 

 

 
Figure 6. Class V problem 

 

CLASS II and III are differentiated by the fact that the former must have “wall-free” 

vertices. A “wall-free” vertex is defined as a vertex on the source or target face that is not 

connected to a wall face. 

3. Source-Target Topology Matching  

In an open volume the source face is not completely connected to the target face. 

Therefore an edge and vertex correspondence cannot readily be established for all topo-

logical entities. The missing relationships need to be discovered. Such discovery is al-

ways limited and thus need to be bound by speculated domain of geometric validity. Al-

gorithm I describes the matching technique - 

ALGORITHM I : Source-Target Face Topological Match-Up 

 

1. Query edge loops of the source and the target faces. 
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2. The source and the target faces need to be topologically similar (same number of 

loops and edges ) but not necessarily be geometric twins. If the number of source 

face loops nSL≠ nTL, the number of target face loops, algorithm does not continue to 

the next step. 

3. Both source vertices and target vertices location on each loop are identified. 

4. Loop Matching is set based on distance between vertices. Thus, 

i.  Each source vertex distance to target vertices are measured and where this dis-

tance is minimized for a source vertex, the respective target vertex is identified as 

a match.  

ii. All the target vertices are cycled to identify if a match of source vertex was iden-

tified, and in the case where, any of the target vertices have not been matched or 

have been matched more than once with source vertices, this is marked as a non-

unique map. 

5. In the case of a non-unique map, the distances to source vertices from each target 

vertex are measured and where this distance is minimized for target vertex, the re-

spective source vertex is identified as a match. 

6. Loops are now matched based on the vertices and their respective loop directions are 

then identified. If direction of loops is mismatched, a flip direction flag is turned on 

for the match. 

7. A validation check is performed based on the mean distances.  

i. First mean and standard deviation of matched loops are calculated. 

ii. Identify if at least 50% of these matches fall under 2 standard deviations. 

iii. If the validation fails, then outliers are identified and are used to identify bet-

ter matches.  

 

The problem, at hand, being ill-defined, obviously the proposed algorithm has its limita-

tions.  If auto-matching fails, the user is prompted to manually match the source and tar-

get face loops. 

4. v-Topology Creation  

The traditional recourse to the problem described above is to take the geometry to a 

CAD product and manually create and stitch-in CAD faces so as to make a closed solid 

body. However, in the present meshing approach this tedious and manual step is com-

pletely eliminated. In order to achieve a closed sweep-meshable body, the void spaces 

need to be first identified and closed in a meaningful manner. This is done by creating a 

new kind of abstract, light-weight, temporary void-topology. The creation methods reside 

within the mesher. We will, from here on, refer to void-topology as “v-Topology” and 

void-geometry as “v-Geometry”.  

The void-volume, to be called v-TopoVolume from here on, is mostly constructed with 

v-Topology. Each v-Topological entity will have underlying v-Geometry that are simpli-

cal geometric representations. The surface mesh generated during sweep meshing could 

probably be used as the best representation of the “constructed” geometry. For an open 

volume portrayed in Fig. 7a, the topology tree and its geometric affiliates are described in 

Fig.8. The TopoFace/TopoEdge(s) define the topology of the given faces, while the “v-

Topo” entities refer to the void faces and edges constructed to seal the open volume and 

convert it to a topologically closed v-TopoVolume as shown in Fig. 7b. 



  

Figure 7a. A typical open volume with a source, a target face and one wall face 

 

 
 

Figure 7b. The open volume with closed with void topology – one void-edge and 2 

void-faces are added to the void-volume 

 

v-TopoVolume 

 

 

TopoFace          TopoFace              TopoFace               v-TopoFace       v-TopoFace    

(F1,src-face)     (F2,tgt-face)          (F3,wall-face)       (vF1,wall-face)   (vF2,wall-face)     

 

TopoEdge      TopoEdge             TopoEdge  

E1,E2,E3             E4,E5,E6                   E2,E7,E5,E8       TopoEdge v-TopoEdge  TopoEdge v-TopoEdge 

                                                                                             E3,E7,E5            vE1               E1,E8,E4         vE1 

 

Figure 8. v-Topology tree for the open volume described in Fig.7a 
 

v-TopoEdges are always constructed between wall-free vertices. 

 

  E1 

  E4 

E2 

E3 

E5 

E7 

 E8 
E5 

  F1 

(src) 

F2 

(trg) 

F3 

vE1 

  E1 

  E4 

E2 

E3 

E5 

E7 

 E8 
E5 

  F1 

(src) 

F2 

(trg) 

F3 

vF1 

vF2 
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It is important to remember again that each v-TopoEdge/v-TopoFace may have underlying v-

GeomEdge/v-GeomFace which are short-lived, lightweight, discrete geometry that may some-

times be used during mesh generation.  

 

The algorithms for v-TopoEdge and v-TopoFace construction are described below in se-

quence– 

 

ALGORITHM II: Construction of v-TopoEdges 

 

1. After topological match-up of the source and target faces, their geometric vertices are 

thus paired.  

2. Once the pairing happens, cycle the source vertices  

{ 

        4a. If the i-th source vertex is a wall-free vertex 

            { 

               4aa. Get the i-th target vertex 

               4ab. Check if it is a wall-free vertex 

                       If not, continue cycling 

               4ac. If yes, create a v-TopoEdge between these vertices 

               4ad. Create a v-GeomEdge which is a straight line between the two vertices. 

               4ae. Link the v-Topo & v-GeomEdge and flag it as a wall-edge. 

             } 

       } 

 

 

Once the v-TopoEdges & their v-GeomEdges are constructed, they are stored in a work-

space with the other Topo and Geom entities. The v-TopoVolume, which is still open at 

this point, is reevaluated and a free-edge list (Fel) is created. Algorithm III is used at this 

point to create the v-TopoFaces.  

 

ALGORITHM III : Construction of v-TopoFaces 

 

1. While Fel is not empty 

{ 

2.    Start a new free-edge list - Feln  

3.    Look for a free-edge on the source, add it to Feln 

4.      While Feln does not form a closed loop 

    { 

5.        Use edge-connectivity to walk the neighbor free-edges. 

        All v-TopoEdges are free edges and figure in Fel initially. They need to be  

       checked at  this step to see if they are still free, i.e., they are not hooked up to     

       v-TopoFaces  yet.  

6.        Select a neighbor free edge. Add it to Feln . Go to step 5. 

     } 

7.      Feln forms a closed loop. Use these free TopoEdges and v-TopoEdges to construct   

     a v-TopoFace. At this point the face is a pure topological face with no geometry.  

     Geometry data can be created later for the v-TopoFace if desired. (Ideally, some    

     geometry is always created whether it is needed by meshing or not. This is to  

     ensure that the volume generated is always both topologically and geometrically      

     closed.) 

8.   The TopoEdges in Feln are removed from Fel. 



9.   The v-TopoEdges in  Feln are re-evaluated and if  not free anymore they are re    

   moved from Fel. 

10.    Feln is emptied. Go back to step 2. 

       } 

5. v-Geometry Creation  

 Once the v-Topology entities are established their underlying v-Geometry need to 

be created. All v-TopoEdges need v-Geometry because all edges are seeded during mesh-

ing. Since these edges connect two vertices in void space, there is no intermediate path-

data to predict their shape. Thus all v-TopoEdges are assumed to be linear. v-TopoFaces, 

however, may not necessarily need any geometry for mesh generation, especially when 

the v-TopoFace is a wall face. All wall faces need 2D transfinite meshes in order to pro-

duce a swept hexahedral solid mesh. A 2D transfinite mesh can be generated in 3D space 

using traditional TFIs. However, to seal the v-Volume both topologically and geometri-

cally we generate v-Geometry on all faces irrespective of the needs of the mesher. Three 

different methods of geometry creation are used. Furthermore, the v-Geometry created in 

the process of mesh generation can be handed back to the CAD engine for geometry crea-

tion. 

 

   5.1 2D Meshing on a Newell Domain 

Each v-TopoFace has a facetted boundary data that presents itself as loops of facet 

edges. Each facet edge is linear and is defined by 2 3D points. Thus the v-TopoFace can 

be represented as a 3D point-loop. The following algorithm is used to fill the v-

TopoFace 

 

 
a.                                                  b.                                             c. 

Figure 9. A 3D v-TopoFace (a) and its corresponding 2D Newell Domain (b) which is 

meshed and transformed back in 3D to yield the facetted face (c). 

 

 

ALGORITHM IV: v-TopoFace geometry creation using meshing on a Newell Do-

main 

 

1. The 3D polygonal loops (shown in Figure 9a)  represented by facet points of the edg-

es that make the boundary of the v-TopoFace are transformed to a 2D plane or a 

Newell domain [6] which is any 2D plane where the projected 3D area is maximized 

following a least-square approach. 

2. A transformation relationship is established between the 3D and 2D domains ex-

pressed by the vector normal to this 2D plane.  
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3. Inner/Outer loops are identified based on their 2D locations. The 2D domain is used 

to generate a triangular mesh between them using any 2D meshing algorithm. 

4. All interior nodes and elements are transformed to 3D space using the transformation 

relationship; new facet points are generated at node locations etc. This 3D mesh rep-

resents the facetted v-TopoFace.  

 

This freshly constructed v-TopoFace can now be flattened and meshed using procedures 

explained by Beatty & Mukherjee [7]. A limitation of this method of v-TopoFace crea-

tion is the limitation of the Newell domain. If the original 3D loops are too curved, the 

loops can overlap and self-intersect in 2D. In such a scenario we revert to the method de-

scribed in 5.3. 

 

   5.2 v-TopoFace defined by 2-loops 

For class I problems, source and target face exist but are disconnected (i.e. no wall fac-

es exist between the two) and a surface dependency has been established either automati-

cally or manually, there are some special cases that need special treatment.  

One such case is when we have only one free vertex that exists on both source and tar-

get (i.e. a loop that consist of one closed edge). In such case, the wall face has only one 

wall edge defined by the straight line between the source and target vertex. The virtual 

wall face is not map meshable because we cannot define four logical sides. Another case 

as described in Figure 10, requires special treatment is two concentric cylinders, one be-

ing the source face and the other one the target face with the missing wall faces repre-

sented by the top and bottom annular discs. Again, the wall faces (annular discs) are not 

map meshable as no four logical sides exist.  

 

Figure 10. A Class I v-TopoVolume with annular wall v-TopoFaces  

 

These special cases can be handled in many different ways. In our approach, we direct-

ly created a structured mesh in 3D. Algorithm V describes the approach for geometry 

creation for the annular wall face. 

 

ALGORITHM V: Geometry creation for annular wall v-TopoFace 
 

1. We have a v-TopoFace that consists of two loops. One loop is the source loop 

made up of source edges and the other one is the target loop made up of the cor-

responding target edges. We assume that the number of layer between the source 

and target is user input.  

2. The surface dependency data is also input and consists of a map between the 

source pair (edge, direction) and the target pair (edge, direction). For each source 

Annular  

void  

wall faces 



edge and its direction in the source loop, the corresponding target edge and its di-

rection in the target loop is defined. Boundary nodes are created on the source 

edges and their corresponding boundary nodes on the target edges are stored in a 

map during the boundary node generation.  

3. Once the node map between source nodes and target nodes is established, internal 

nodes along the node line starting at the source node and ending at its corre-

sponding target node are created using a linear interpolation. The node line gets 

subdivided into nL layer segments.  

4. Moving counter clock wise along the edges of the source loop, rows of quad ele-

ments are created by connecting newly created internal nodes along the node line 

to previous ones. Finally a structured mesh is generated and stored as the mesh 

on the virtual wall face.  

5. The method described previously applies to not just annular wall faces but to any 

two loops between a source and a target face that have no wall faces. It is the on-

ly recourse when the loop has only one edge. However, when the loop has more 

n edges [n>1]. One can decide to use this method or create n v-TopoFaces using 

Algorithm VI. 

 

5.3 v-TopoFaces with high boundary curvature 

If a wall v-TopoFace boundary has a large wrapping angle the Newell domain becomes unre-

liable. Instead, 3D TFI is used to create the final quad mesh on the face before its v-Geometry is 

determined. Then, the transfinite mesh is used to generate its v-Geometry following the algo-

rithm described below (Fig.11a-11d) –  

 

 
Figure 11a. Boundary facet point distribution for a curved v-TopoFace 

 

 

 
Figure 11b. 3D Transfinite mesh on the v-TopoFace showing boundary and interior nodes.  

 

 

t 

t 
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Figure 11c. Boundary nodes are removed and each facet point is connected to the nearest in-

terior node.  

 

 

 
Figure 11d. Interior nodes are replaced by new facet points and all quad facets are triangu-

lated to create a facetted v-GeomFace.  

 

 

ALGORITHM VI: Geometry creation for curved v-TopoFaces  

 

1. Use Algorithm IV to generate face facets even if they overlap/intersect. 

2. This v-GeomFace is not used to mesh the wall-face 

3. The face boundary is discretized during hex mesh generation as shown in Fig. A bilinear 

3D TFI is used to create the quad mesh on the geometry-less face. Let P,Q,R,S be func-

tions representing the boundary curves in any Cartesian 3D space. Thus, 

                    P≡Q≡R≡S≡f(x,y,z)      (1) 

and the rail points are 

P(x,y,z)≡r(u,0),   Q(x,y,z)≡r(u,1), R(x,y,z)≡r(0,v) and S(x,y,z)≡r(1,v) (2) 

where r(a,b) is a generic parametric function that represents each boundary curve in the 

range of a to b. Also at any point on the boundary curves the Cartesian functions can be 

written as 

P(x,y,z)≡(Px, Py, Pz)        (3) 

The corners of the area are denoted by A,B,C,D where  

A(x,y,z)≡r(0,0), B(x,y,z)≡r(1,0), C(x,y,z)≡r(1,1) and D(x,y,z)≡r(0,1) (4) 

Thus, for any interior node E(x,y)≡r(u,v), Coons bilinear blending function can be written 

as a boolean sum. 

Ex = (1-v)Px + vQx + (1-u)Rx + uSx - [(1-u)(1-v)Ax + (1-v)uBx +v(1-u)Dx +uvCx];    

Ey = (1-v)Py + vQy + (1-u)Ry + uSy - [(1-u)(1-v)Ay + (1-v)uBy +v(1-u)Dy +uvCy]; 

Ez = (1-v)Pz + vQz + (1-u)Rz + uSz - [(1-u)(1-v)Az + (1-v)uBz +v(1-u)Dz +uvCz];  (5) 

t 

t 



 

4. This final quad mesh is now transformed to facet data. First new facet points are created 

at interior node locations. All boundary node locations are swapped with facet points 

closest to them.  

5. At this point all nodes have corresponding facet points. Next, all boundary facet 

(edge interior points only) points are connected to an interior facet location clos-

est to them to form new facets on the boundary. 

6. This facet-node relationship is used to create new triangular and quadrangular 

facets on the face.  

7. All quad-facets are sliced into two triangles by splitting along the shortest diago-

nal. This will result in a valid all-tria facet mesh which is used to build the v-

GeomFace for this wall v-TopoFace. Figures 11(a-d) describe the steps of this 

algorithm. 

6. Volume Closure Strategies  

The v-Topology and its underlying v-Geometry are abstract, temporary, lightweight, 

mesher-native geometry representations that are necessary elements required to create a 

closed void-Volume for hex meshing.  These void topologies and geometries, however, 

cannot be created according to a generic algorithm. The closure strategies are functions of 

their class signatures.  

As the first step in this process, the mesh on the source face is morphed on to the target 

following our earlier algorithm [8]. In the process, a map of the source and target nodes 

(N-Map) and vertices (V-Map) are created. 

 

6.1 Closure strategy for Class I v-Volumes 

In case of Class I problems, there are no wall faces. This scenario does not need a sweep 

meshing technique to generate the hexahedral mesh. It’s a case of pure translation where 

linear nodelines can be created between the source and target meshes using the N-Map. 

These nodelines can then be discretized further according to the desired number of layers; 

auto-generation of the hex mesh is trivial. However, for the sake of elegance, uniformity 

and completeness, topology and geometry are still constructed for Class I problems. The 

following algorithm describes the approach - 

ALGORITHM VII: Volume Closure – Class I Topology  
 

1. Use V-Map or N-Nap to build vTopoEdges 

2. Construct v-TopoVolume (Vv) with the source (Fs) and target face (Ft) 

 

         (6)   

 

3. Check if v-TopoVolume is watertight 

4. Find the free edges Ev (vTopoEdges) 

5. Construct the wall v-TopoFaces 

     One v-TopoFace (Fv ) is created per free loop with p vTopoEdges 

 

          ( 7 ) 
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6. Add the  v-TopoFaces (let’s say m) to v-TopoVolume 

 

           ( 8 ) 
 

Volume is now watertight. All faces are frozen with nodes and quad element faces as the 

hex mesh was generated before v-Topology creation in this case. No v-Geometry and 

thus facet data is necessary for the v-TopoFaces created. However, they are constructed 

only if the mesher is expected to handle its newly created topological/geometry data back 

to CAD to enable it to readily create a watertight solid body. 

6.2 Closure strategy for Class II v-Volumes 

In case of Class II problems, the v-Topology and v-Geometry are needed to build the mesh. Algo-

rithm VIII describes the steps involved.  

 

ALGORITHM VIII: Volume Closure – Class II Topology 

 

1. Use V-Map or N-Map to build vTopoEdges (Ev)  

2. Construct v-TopoVolume (Vv) with m available TopoFaces (F) 

 

  ( 9 ) 
 

3. Check if v-TopoVolume is watertight 

4. Find the free edges (a mix of TopoEdges and vTopoEdges) 

5. Construct the wall v-TopoFaces (no v-Geometry is present initially ) 

6. One v-TopoFace (Fv) is created per free loop as described by eqn. (7). 

7. Use Algorithm IV or Algorithm VI to generate the facets needed to create v-Geometry 

8. Add all of the n v-TopoFaces to v-TopoVolume as wall faces 

 
               ( 10 ) 
 

The volume is now watertight.  

6.3 Closure strategy for Class III v-Volumes 

In case of Class III problems, wall-free vertices are not involved, so there is no need for the N/V-

Maps. Algorithm IX describes the steps involved.  

 

ALGORITHM IX: Volume Closure – Class III Topology 

 

1. Construct v-TopoVolume (Vv) with available m TopoFaces as in eqn. (9). 

2. Check if the volume is watertight 

3. Find free edges (TopoEdges) 

4. Build free loops (single or multiple) to create the v-TopoFaces – one per free loop as in eqn. 

(9). 

5. Use Algorithm IV, Algorithm V or Algorithm VI to build v-Geometry for the v-TopoFaces 

6. Add all of the n v-TopoFaces to v-TopoVolume as wall faces as described by eqn. (10). 



 

The volume is now watertight. 

6.4 Closure strategy for Class IV v-Volumes 

In case of Class IV problems, wall v-TopoFaces, wall-free vertices are not involved. Neither are 

the N/V-Maps as the target face is missing. Algorithm X describes the steps involved.  

 

 

ALGORITHM X: Volume Closure – Class IV Topology 

 

1. Construct v-TopoVolume (Vv) with the available TopoFaces, i.e. the source face (Fs) and the 

m wall faces. 

  
   (11) 

 
2. Find free edges Ev (TopoEdges) 

1. Build free loops (single or multiple) 

2. Use all free loops to build a v-TopoFace (Ft) that represents the target face as described by 

eqn. (7). 

3. Build v-Geometry for the v-TopoFace using Algorithm IV 

4. Add v-TopoFace to v-TopoVolume as target face 

 
  (12) 

 
The volume is now watertight. 

6.5 Closure strategy for Class V v-Volumes 

In case of Class V problems, wall-free vertices are not involved as both the target and the source 

are void. Algorithm XI describes the steps involved.  

 

ALGORITHM XI : Volume Closure – Class V Topology 

 

1. Construct the v-TopoVolume (Vv) with m available TopoFaces (F) 

 
    (13) 

 

2. Check if the v-TopoVolume is watertight 

3. Find p free edges Ev (TopoEdges) 

4. Build free loops (must be an even number of  loops) 

5. Store the point-loop data in a spatial hash or a 3D Cartesian grid 

6. Use the hash/grid to group the loops into two distinct subsets separated by a sweeping dis-

tance 

7. Build 2 v-TopoFaces (Fs, Ft), one with each loop subset 

 

   (14) 
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  (15) 

 

8. Use Algorithm IV to build v-GeomFace for each v-TopoFace 

9. Add one v-TopoFace to v-TopoVolume as source face 

10. Add other v-TopoFace to v-TopoVolume as target face 

 
   (16) 

 

The volume is now watertight. 

7. 2D Mesh Generation on the Volume Skin

CSALF-Q, a combined recursive subdivision and loop-paving auto quad mesh generation algo-

rithm [8,9] is used to generate the mesh on the source face. The wall faces are meshed using 

transfinite meshing methods [10].  

8. Hexahedral Sweep Mesh Generation  

Once the 2D meshes on the surface (except for the target face) are done, the hexahedral mesh is 

generated by a 2½D sweep meshing approach. The source mesh is advanced through the volume 

primarily by means of an affine transformation [11]. Where the affine transformation does not ex-

ist, the nodes on the cross-section are advanced according to local normal vectors and smoothed 

according to various earlier reported techniques [11]. The last layer is finally projected onto the 

target face and smoothed using a variational smoother [12].

9. Results & Discussion 

A tool’s effectiveness and usefulness lies in its implementation in various applications. In 

the case of our algorithm, majority of its applications are described in section 1. One such appli-

cation where open-volume hex-meshing can be used is simulating residual stress applied to arte-

rial walls with and without blood pressure. The arterial wall is made up of collagen, elastic fibers 

and other various muscle fibers that form the unstructured wall [5]. A simplified model of an ar-

tery (Figure 12a), is used to show and simulate these stresses. A finite element model is con-

structed, where interior components of arterial walls are represented by hexahedral elements. 

Creation of these elements follows the steps mentioned in the sections 3-8.   

 Firstly, source and target face topologies are matched. Secondly, V-TopoEdges are creat-

ed using algorithm II as shown in Figure 12b. Next, V-Geometry is created using algorithm V. 

Fourthly, the volume of this hex mesh is closed by the algorithm VII. Finally, hexahedral sweep 

mesh is generated by procedures described in sections 7 and 8. The final finite element mesh gen-

erated is shown in Figure 12b. 

 

 

 

 

 



                                                 

 
Fig12a. V- Geometry created using Algorithm V and the volume is closed by Algorithm VII. 

 

 
 
Fig 12b. The final arterial model with a Hexahedral swept mesh. 

 

 Similar to the application above, the same algorithm family is used to create the hex mesh 

for examples listed in Table I in section 2. The results are displayed in Table II.        

The final meshes for open volumes of Class I-V are shown in Fig.13 (a-e). 

 

Table II:  Final Hexahedral Meshes on Open Volumes 

 
CLASS 

 
Algorithm 

used to cre-

ate V-

Topology 

Algorithm 

used to cre-

ate V-

Geometry 

Algorithm 

used to cre-

ate Close 

Volume 

Figures 

 I 

 

 II,III IV,VI VII  

 
Figure 13a. Hex mesh for a Class I v-

TopoVolume 
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 II II,III IV,V,VI 

 

 

 

 

 

VIII  

 
Figure 13b. Hex mesh for a Class II 

problem showing wall-free vertices 

III II,III IV, VI IX 

 
Figure 13c. Hex mesh for a Class III v-

TopoVolume 

IV II,III IV, VI X  

 
Figure 13d. Hex mesh for a Class IV v-

TopoVolume 

V  

 

II, III IV,VI XI 

 
Figure 13e. Hex mesh for a Class V v-

TopoVolume 



10. Acknowledgement 

The authors would like to thank Kirk Beatty of the Meshing and Abstraction Team at Siemens for 

his continued support of this research. 

11. Reference 

1. Steven R. Jankovich, Steven E. Benzley, Jason F. Shepherd, Scott A. Mitchell, “The Graft 

Tool: An All-Hexahedral Transition Algorithm for Creating a Multi-Directional Swept Vol-

ume Mesh”, Proceedings, 8th International Meshing Roundtable, pp. 387-392 (1999). 

2. L. Mingwu, S. Benzley, G. Sjaardema, T. Tautges, “A Multiple Source and Target Sweeping 

Method for Generating All Hexahedral Finite Element Meshes”, Proceedings, 5
th
 Interna-

tional Meshing RoundTable, pp. 217-225 (1996). 

3. Hongwei Lin, Hongwei Liao, Chongyang Deng. Filling Triangular Mesh Model with All-Hex 

Mesh by Volume Subdivision Fitting. Technical Report, TR ZJUCAD 2012 002, State Key 

Lab. Of CAD&CG.  

4. J. Shepherd and C. Johnson, “Hexahedral mesh generation constraints”. Engineering with 

Computers vol. 24, No.3, pp.195–213 (2008). 

5. A. Delfino, N. Stergiopulos, J.E. Moore, J.J. Meister,  “Residual strain effects on the stress 

field in a thick wall finite element model of the human carotid bifurcation”, Journal of  Bio-

mechanics. vol.30, pp.777–786 (1996). 

6. Daniel Sunday, “Fast Polygon Area and Newell Normal Computation”, Graphics Tools, Ed. 

R. Barzel, AKPeters, MA (2005). 

7. K. Beatty & N. Mukherjee, “Flattening 3D Triangulations for Quality Surface Mesh Genera-

tion”, Proceedings, 17th International Meshing Roundtable, pp 125-139, (2008). 

8. R. Vurputoor, N. Mukherjee, J. Cabello and M. Hancock, “A Mesh Morphing Technique for 

Geometricaly Dissimilar Tessellated Surfaces”, Proceedings, 16th International Meshing 

Roundtable, Springer-Verlag, pp.315-334, (2007).  

9. Nilanjan Mukherjee, “CSALF-Q - A Bricolage Algorithm for Anisotropic Quad-Mesh Gen-

eration”, Proceedings, 20th International Meshing Roundtable pp. 489-510 (2011).  

10. K. Beatty & N. Mukherjee, “A Transfinite Meshing Approach for Body-In-White Analyses”, 

Proceedings, 19th International Meshing Roundtable, pp 49-66, (2010). 

11. Patrick Knupp, “Applications of Mesh Smoothing: Copy, Morph, And Sweep On Unstruc-

tured Quadrilateral Meshes”, International Journal for Numerical Methods in Engineering, 

vol. 45, pp. 37-45, (1999). 

12. N. Mukherjee, “A hybrid, variational 3D smoother for orphaned shell meshes”, Proceedings., 

11
th
 Int. Meshing Roundtable, pp.379-390, (2002).



 


